

This article was downloaded by:

On: 25 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Influence of pH and Diluent on the Ion-Pair Solvent Extraction of Aromatic Carboxylic Acids Using Quaternary Ammonium Salts

Kunio Kawamura^a; Keiji Takahashi^a; Akitsugu Okuwaki^a

^a Graduate School of Environmental Studies, Tohoku University Aoba, Aramaki, Aoba-ku, Sendai, Japan

To cite this Article Kawamura, Kunio , Takahashi, Keiji and Okuwaki, Akitsugu(2006) 'Influence of pH and Diluent on the Ion-Pair Solvent Extraction of Aromatic Carboxylic Acids Using Quaternary Ammonium Salts', *Separation Science and Technology*, 41: 12, 2795 — 2806

To link to this Article: DOI: 10.1080/01496390600831675

URL: <http://dx.doi.org/10.1080/01496390600831675>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Influence of pH and Diluent on the Ion-Pair Solvent Extraction of Aromatic Carboxylic Acids Using Quaternary Ammonium Salts

Kunio Kawamura, Keiji Takahashi, and Akitsugu Okuwaki

Graduate School of Environmental Studies, Tohoku University Aoba,
Aramaki, Aoba-ku, Sendai, Japan

Abstract: The influence of pH and diluent on the ion-pair solvent extraction of benzene polycarboxylic acids have been investigated for the separation of the coal oxidation products, which are formed by the treatment with alkaline solutions at high temperatures. Although the extent of the solvent extraction of benzoic acid (1BE) with a quaternary ammonium reagent (tri-n-octylmethylammonium chloride) into chloroform and benzene did not change at a very acidic and alkaline solutions, those of 1,2-benzenedicarboxylic acid (12BE) and trimellitic acid (124BE) somewhat decreased at very low pH and very high pH. The magnitudes of the equilibrium constants (K_{ex}) of 1BE using a different diluent decreased in the order benzene > carbontetrachloride > 1,2-dichloroethane > cyclohexane > hexane > chloroform > 1-octanol and those of 12BE decreased in the order benzene > cyclohexane > carbontetrachloride > hexane > 1,2-dichloroethane > chloroform. The inspection of the correlation between the values of K_{ex} and several parameters of the diluent implies that the magnitude of K_{ex} can be described by using the dielectric constant and the solubility parameter of diluent.

Keywords: Ion-pair solvent extraction, aromatic carboxylic acid, coal oxidation products, hydrothermal reaction products, quaternary ammonium salt

INTRODUCTION

The oxidation of coal in alkaline solutions at elevated temperatures is an important process to produce coal chemicals, which are sometimes difficult

Received 1 December 2006, Accepted 2 May 2006

Address correspondence to Kunio Kawamura, Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 599-8531, Japan. E-mail: kawamura@chem.osakafu-u.ac.jp

to obtain from petroleum (1–3). Since oxalic acid and benzene polycarboxylic acids are obtained from coal oxidation (3–11), pilot operations of the coal oxidation to produce aromatic carboxylic acid in sodium hydroxide solutions at high temperatures were already developed in the middle of the 20th century (12–14). It has been demonstrated that the production of oxalic acid using the coal oxidation technique in sodium hydroxide solutions at high temperatures is useful for producing oxamide which is a slow releasing nitrogen fertilizer (15, 16). Aromatic polycarboxylic acids are also attractive (12, 14). For instance, phthalic acid isomers are suitable as resources for polyester plastics. However, the industrial applications of aromatic acids formed by the coal oxidation have not yet practically succeeded, since the practical separation and recovery techniques are essential to use these aromatic acids.

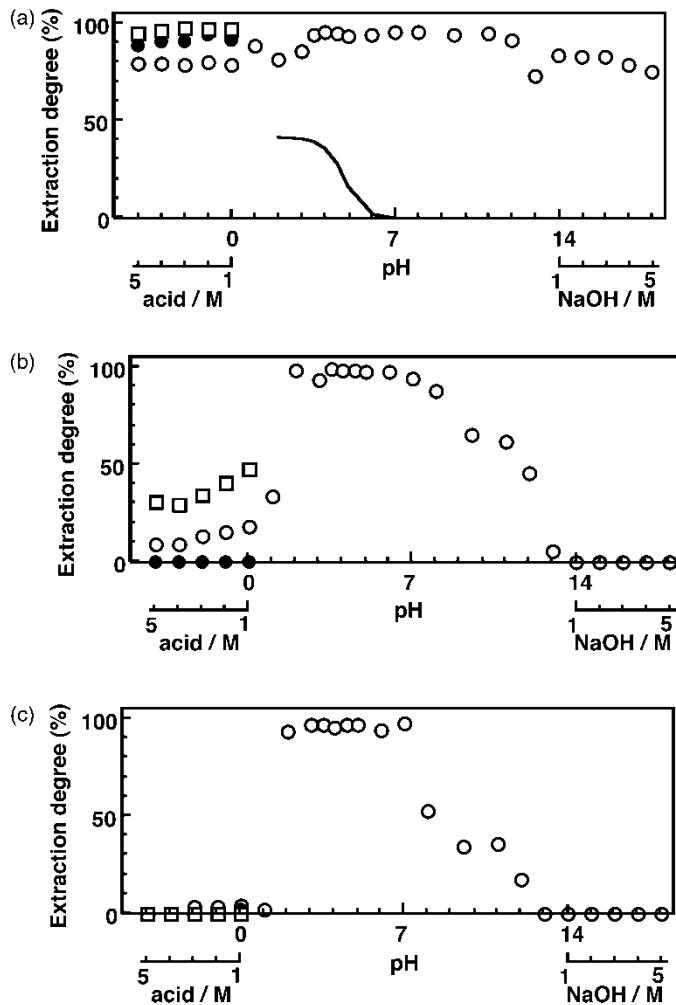
The solvent extraction technique using several kinds of diluent has been applied for the recovery of carboxylic acids with tertiary amines or quaternary ammonium salts. Successful studies involve the extraction of aliphatic carboxylic acids, such as acetic acid, formic acid, propionic acid, lactic acid, using tertiary or quaternary ammonium ions in a different diluent (17–22). However, few investigations of the extraction of aromatic acids have been carried out. Recently, we have found that it is possible to extract aromatic polycarboxylic acids using quaternary ammonium salts into organic phase and this technique is useful for the separation and the recovery of aromatic polycarboxylic acids (23). Based on the previous study, the influences of pH and diluent for the extraction behavior of benzene polycarboxylic acids were investigated to develop a practical separation method.

EXPERIMENTAL

Chemicals

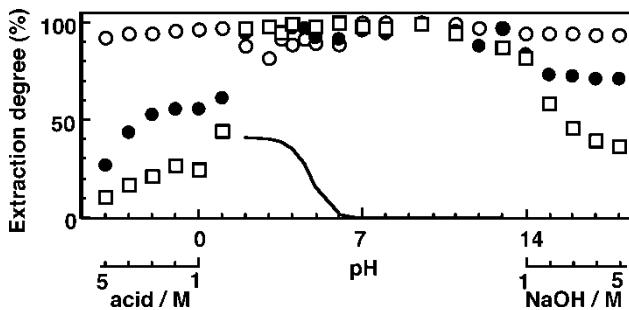
All reagents used were of analytical grade from Wako Pure Chemical Industries Ltd., Japan. Abbreviations of the benzene polycarboxylic acids and a quaternary ammonium salt are as follows; 1BE: benzoic acid, 12BE: 1,2-benzenedicarboxylic acid, 124BE: trimellitic acid (1,2,4-benzenetricarboxylic acid), 135BE: trimesic acid (1,3,5-benzenetricarboxylic acid), 1245BE: pyromellitic acid (1,2,4,5-benzenetricarboxylic acid), 12345BE: 1,2,3,4,5-benzenepentacarboxylic acid, 123456BE: mellitic acid (1,2,3,4,5,6-benzenehexacarboxylic acid), TOMACl: tri-n-octylmethylammonium chloride.

Extraction Procedure and Equipment


The extraction behavior was investigated using the following procedure (23). To investigate the influence of pH, solutions containing 10^{-3} M benzene

polycarboxylic acid were prepared in aqueous solution at pH 0–14. In a test tube, a 20 ml of benzene polycarboxylic acid solution was placed, and to it was added a 20 ml of organic phase involving 10^{-2} M TOMACl. For the influence of the diluent, solutions containing 10^{-3} M benzene polycarboxylic acid were prepared in 0.1 M sodium hydroxide solution. The pH of the aqueous phase was controlled using HCl, HClO_4 , or H_2SO_4 (pH < 0), 0.1 M phosphate buffer (pH = 2–3, 6–8, 11–12), 0.1 M acetate buffer (pH = 3.5–5), 0.1 M borate buffer (9.5), NaOH (pH > 13). The sample solution was shaken for 20 min at 20°C. After the centrifugation of the two-phase system, the residual concentration of aromatic polycarboxylic acids in the aqueous phase was determined on the basis of UV absorbance at 269–286 nm. A Shimadzu UV-365 double-beam spectrophotometer with 1 cm quartz cells was used. The pH of the sample solutions was measured using a Hitachi-Horiba F-7ss II pH meter.

RESULTS AND DISCUSSION


Effect on pH for the Extraction of Benzene Polycarboxylic Acids

The extraction degree of 1BE, 12BE, and 124BE with TOMACl into chloroform or benzene is illustrated as a function of pH in Fig. 1a–1c and Fig. 2. The benzene polycarboxylic acids were extracted at pH 2–7 in all the cases but the extraction degree decrease in the order 1BE > 12BE > 124BE at below pH 2 and above pH 7. The extraction degree of the benzene polycarboxylic acids using benzene was constant at 100 % at pH 2–11. There was no obvious influence of the kind of pH buffer at pH 0–14 while different buffer solutions were used in this pH range. This fact indicates that the influence of anions to control pH of aqueous phase do not strongly affect the extraction degree of aromatic acids at pH 0–14. On the other hand, the extraction degree decreased with increasing the acid concentration at pH below 0 using different acids in the order H_2SO_4 > HCl > HClO_4 . The decrease of the extraction degree at the very acidic pH is probably due to the competition between the ion-pair formation of TOMA^+ with benzene polycarboxylate anions and that of TOMA^+ with inorganic anions (SO_4^{2-} , HCl^- , ClO_4^-). This fact is consistent with previous studies (18, 24), in which competitive extractions between carboxylic and mineral acids by amines have been observed. At very low pH, the aromatic carboxylic acids exist as neutral acid forms in aqueous phase since the pKa values are 4.01 for 1BE, 2.76, 4.91 for 12BE, and 2.42, 3.71, 5.01 for 124BE (25). Thus, the ion-pair extraction degree should be reduced at low pH, while the neutral forms are extracted into organic phase as shown in the solid lines in Figs. 1a and 2. The extraction of neutral form acids is discussed later. The strength of the ion-pair formation between inorganic anions and quaternary ammonium ions decreased in the order ClO_4^- > Cl^- > SO_4^{2-} (26, 27).

Figure 1. Influence of pH for the extraction of benzene polycarboxylic acids into chloroform. $[\text{Benzene polycarboxylic acid}]_T = 10^{-3} \text{ M}$, $[\text{TOMACl}]_T = 10^{-2} \text{ M}$, organic phase: chloroform, (volume of water phase)/(volume of organic phase) = 1, 20°C. a: 1BE, b: 12BE, c: 124BE. Mineral acids to control pH < 0 in a-c: open circles: HCl, closed circles: HClO₄, open squares: H₂SO₄. The solid curve in Fig. 1a indicates the extraction degrees in the absence of TOMACl.

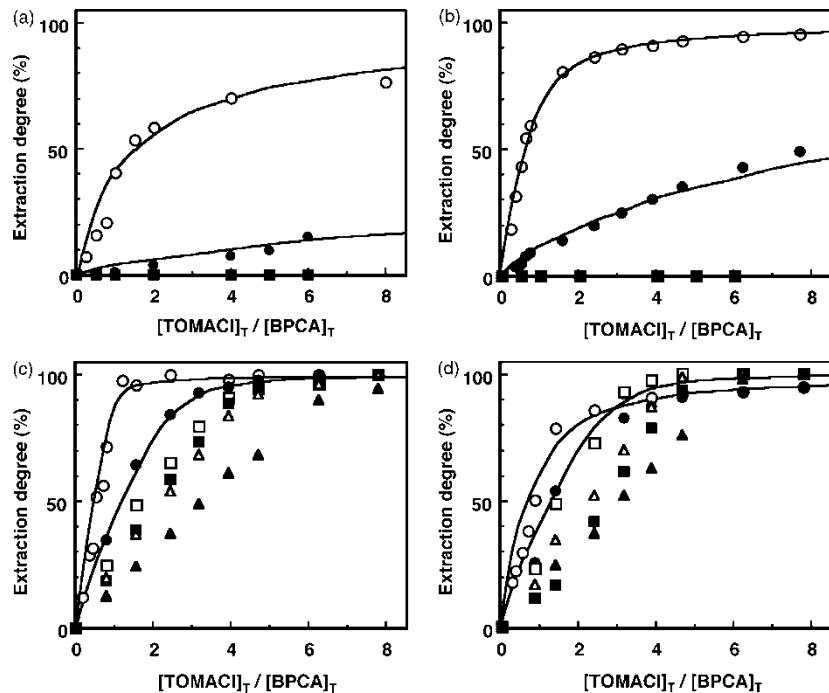
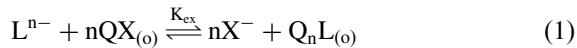
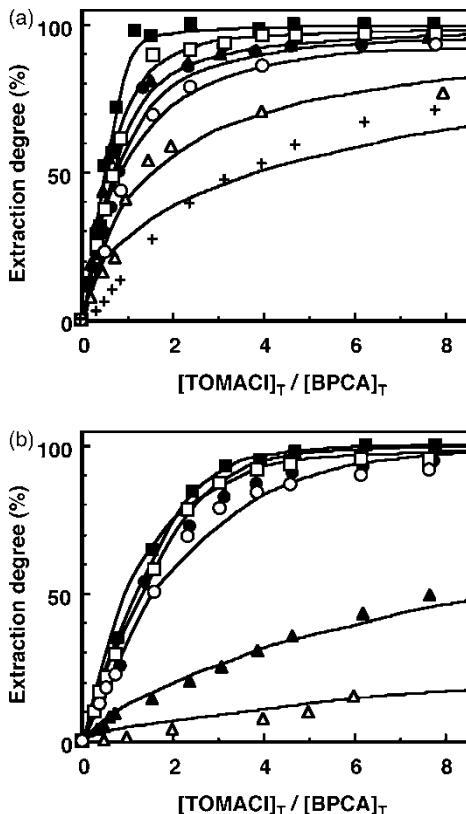

Thus, this trend is consistent with the extraction degrees using the inorganic anions at very low pH where TOMA⁺ are consumed to form strongly the ion-pairs with these inorganic anions rather than with benzene polycarboxylate anions. The ion-pairs of TOMA⁺ with the inorganic anions would be extracted into the organic phase or possibly retains at the interface between the water and organic phases. On the other hand, the extraction

Figure 2. Influence of pH for the extraction of benzene polycarboxylic acids into benzene. $[\text{Benzene polycarboxylic acid}]_T = 10^{-3} \text{ M}$, $[\text{TOMACl}]_T = 10^{-2} \text{ M}$, organic phase: benzene, (volume of water phase)/(volume of organic phase) = 1, 20°C . Benzene polycarboxylic acids: open circles: 1BE, closed circles: 12BE, open squares: 124BE. H_2SO_4 was used to control pH < 0. The solid curve indicates the extraction degrees in the absence of TOMACl.

degrees decreased at highly concentrated alkaline pH. This is primarily due to the competition between the ion-pair formation of TOMA^+ with benzene polycarboxylic acids and that with OH^- . Possibly, coextraction of acids and OH^- would have occurred at a very high concentration of alkaline solution (28), while the molar ratio plots are consistent with the stoichiometric extraction between aromatic polycarboxylic acid and TOMA^+ ion (Fig. 3a–3d). Besides, a trend was found that the extraction degree decreases with increasing pH is in the order 1BE > 12BE > 124BE. This would be useful for the separation of these aromatic acids. This is probably due to the following reason. The hydrophilic nature of the benzene polycarboxylic acids would increase with increasing the number of the carboxylic group. Besides, the extraction degree of 1BE, 12BE, and 124 BE into benzene using TOMACl was also investigated as a function of pH (Fig. 2). The extraction ability into benzene at alkaline pH is greater than that into chloroform. The pH dependence using benzene is basically consistent with that using chloroform.


Besides, the extraction degree of 1BE, 12BE, and 124BE in the absence of TOMACl is shown in the solid lines Figs. 1a and Fig. 2. 12BE and 124BE were not extracted into chloroform at all and the extraction degree of 1BE was much smaller than that in the presence of TOMACl. According to the values of lowest $\text{p}K_a$ for 12BE (2.76) and 124BE (2.42), 12BE and 124BE are almost deprotonated at neutral pH (25). Thus, the extraction of 12BE and 124BE at their neutral forms is obviously difficult. The slope of the plots for the logarithmic values of the extraction degree of 1BE as a function of pH was -1 . This indicates that the neutral form of 1BE is extracted into chloroform. The extraction behavior in the absence of TOMACl clearly demonstrates that the quaternary ammonium salt is essential for the extraction of benzene polycarboxylic acids.


Figure 3. Molar ratio plots for the extraction of aromatic polycarboxylic acids into different diluents. $[Benzene\ polycarboxylic\ acid]_T = 10^{-3}\ M$, quaternary ammonium salt: TOMACl, $20^\circ C$, diluent: a; chloroform, b; 1,2-dichloroethane, c; benzene, d; cyclohexane; open circles: 1BE, closed circles: 12BE; open squares: 135BE, closed squares: 1234BE, open triangles: 12345BE, closed triangles: 123456BE. BPCA: benzene polycarboxylic acid. The lines drawn through the experimental points were fit on the basis of the reaction model shown in Eq. (1) and (2).

Influence of Diluent

The extent of extraction of benzene polycarboxylic acids (1BE, 12BE, 123BE, 1245BE, 12345BE, 123456BE) with TOMACl into several diluents was determined as a function of the molar ratio of TOMACl to the benzene polycarboxylic acids (Fig. 3a–3d, Fig. 4a, 4b). Based on the plots shown in Fig. 3a–3d, Fig. 4a, 4b, the stoichiometry of the extraction and its equilibrium constant are expressed as Eq. (1) and (2) give the extraction equilibrium constant,

$$K_{ex} = \frac{[X^-]^n [Q_nL_{(o)}]}{[L^{n-}] [QX_{(o)}]^n}. \quad (2)$$

Figure 4. Molar ratio plots for the extraction of benzoic acid (1BE) and 1,2-benzenedicarboxylic acid (12BE) into different diluent. $[\text{Benzene polycarboxylic acid}]_T = 10^{-3} \text{ M}$, 20°C , quaternary ammonium salt: TOMACl. a: 1BE, b: 12BE; diluent: open circles: hexane, closed circles: cyclohexane; open squares: carbontetrachloride, closed squares: benzene, open triangles: chloroform, closed triangles: 1,2-dichloroethane; plus: 1-octanol. BPCA: benzene polycarboxylic acid. The lines drawn through the experimental points were fit on the basis of the reaction model shown in Eq. (1) and (2).

where L^{n-} indicates aromatic carboxylate ion. The plots in Fig. 3c support the extraction of benzene polycarboxylic acid requires $n Q^+$ molecules but the stoichiometry is not clear when other diluent was used (Figs. 3a, b, and d). The extraction degree decreased in the order 1BE > 12BE > 123BE > 1245 BE > 12345BE > 123456BE. This coincides with the number of negative charges of the benzene polycarboxylic acids. The quantitative extraction of all types of benzene polycarboxylic acids was possible at a high concentration of TOMACl when benzene or cyclohexane was used (Figs. 3c, d). However, the extraction abilities of chloroform and 1,2-dichloroethane were weak and no

other benzene polycarboxylic acids were extracted. This fact indicates that chloroform and 1,2-dichloroethane are suitable for the separation of 1BE and 12BE from others. The values of K_{ex} were determined on the basis of the following calculations for the cases of 1BE and 12BE on the basis of a previous study (23). The values of K_{ex} are summarized in Table 1. In this analysis, the counter anion within $QX_{(o)}$ ion-pair can be replaced with OH^- since the concentration of OH^- was fairly high. The contribution of OH^- for the ion-pair extraction should be relatively smaller than that of other halogen ions for the cases of 1BE and 12BE as shown in Fig. 1 (26, 29). In the present study, the concentration of OH^- was common for the determination of K_{ex} using different quaternary ammonium salts so that the comparison of the values of K_{ex} is valuable.

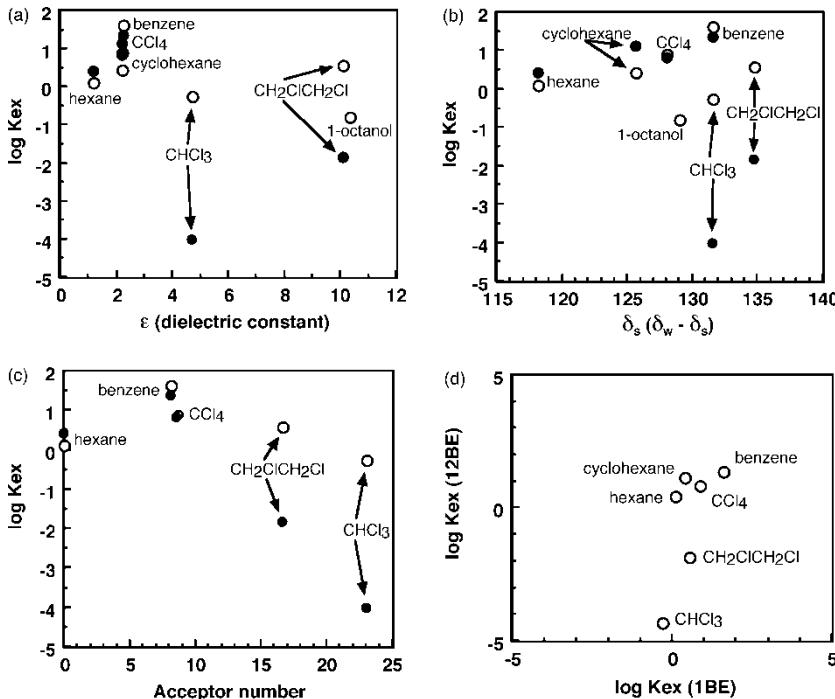

The magnitude of K_{ex} for 1BE using different diluents decreased in the order benzene > carbontetrachloride > 1,2-dichloroethane > cyclohexane > hexane > chloroform > 1-octanol and that for 12BE decreased in the order benzene > cyclohexane > carbontetrachloride > hexane > 1,2-dichloroethane > chloroform. While there seems to be no obvious relationship between the magnitude of K_{ex} and the nature of the diluent, the correlation between the logarithmic values of K_{ex} with dielectric constant (ϵ), solubility parameter (δ_s) (30), and acceptor number (AN) (31) was inspected (Fig. 5a-c). Additionally, the relationship between the logarithmic values of K_{ex} for 1BE and those for 12BE is shown in Fig. 5d. There was no obvious linear free energy relationship between the extractions of 1BE and 12BE. The difference between the values of K_{ex} for 1BE and 12BE is relatively small when the values of ϵ is lower than 4, while the unit of K_{ex} is different between 1BE and 12BE. This may be due to the fact that ion-pairs in a diluent possessing higher ϵ tends to dissociate but those in a diluent possessing lower ϵ does not readily dissociate. Besides, there seems

Table 1. Logarithmic values of K_{ex} and physico-chemical parameters of diluent

Diluent	1BE	12BE	ϵ	δ_s	$\delta_s(\delta_w - \delta_s)$	AN
Hexane	0.10 ± 0.06	0.41 ± 0.10	1.19	7.27	118.21	0.0
Cyclohexane	0.42 ± 0.06	1.11 ± 0.10	2.20	8.20	125.71	—
CCl_4	0.87 ± 0.04	0.81 ± 0.1	2.23	8.55	128.08	8.6
Benzene	1.62 ± 0.04	1.35 ± 0.05	2.28	9.16	131.63	8.2
$CHCl_3$	-0.27 ± 0.05	-4.03 ± 0.28	4.72	9.16	131.63	23.1
1,2-dichloroethane	0.56 ± 0.02	-1.86 ± 0.09	10.13	9.86	134.79	16.7
1-octanol	-0.81 ± 0.28	—	10.34	8.71 ^a	129.08	—

ϵ : dielectric constant (25°C), δ_w : solubility parameter (25°C), AN: acceptor number.

^aThe value was calculated from the following equations. $\delta = (\Delta E^V/V)^{1/2}$, $\Delta E^V 298 = -3542 + 23.7 T_b + T_b^2$ (V: the mol volume of diluent, T_b : the boiling point of diluent)

Figure 5. The logarithmic values of K_{ex} as a function of several parameters concerning the diluents. (A) $\log K_{\text{ex}}$ vs. ϵ (dielectric constant), (B) $\log K_{\text{ex}}$ vs. $\delta_s(\delta_w - \delta_s)$, (C) $\log K_{\text{ex}}$ vs. AN(acceptor number), (D) $\log K_{\text{ex}} (12\text{BE})$ vs. $\log K_{\text{ex}} (1\text{BE})$. (A – C) open circles: 1BE, closed circles: 12BE.

to be a correlation that the logarithmic values of K_{ex} is proportional to the values of $\delta_s(\delta_w - \delta_s)$ (δ_w : the solubility parameter of water), where 2 lines seem to exist for the cases of 1BE and 12BE. In other words, the nature of the diluents seem to be classified into the group involving n-hexane, cyclohexane, carbontetrachloride, and benzene and the other group involving chloroform, 1,2-dichloroethane, and 1-octanol. According to the theory of regular solution, it is expected that the logarithmic value of the partition coefficient of solute is proportional to the values of $\delta_s(\delta_w - \delta_s)$. In the present system, the equilibrium constant (K_{ex}) is expressed by the product of the association formation constant of ion-pair in diluent (K_{ass}) and the partition coefficient of the ion-pair (P_{ip}) (Eq (3)).

$$K_{\text{ex}} = K_{\text{ass}} P_{\text{ip}} \quad (3)$$

For the cases of n-hexane, cyclohexane, CCl_4 , and benzene, the dielectric constants are small so that the ion-pairs in the diluent would hardly

dissociate L^{n-} and Q^+ . Besides, the ion-pairs in chloroform, 1,2-dichloroethane, and 1-octanol would dissociate since the dielectric constants are greater than the former group. This could result in the correlation between the logarithmic values of K_{ex} and $\delta_s(\delta_w - \delta_s)$ within these two groups. This trend is coincidental with the correlation between the logarithmic values of K_{ex} for 1BE and 12BE where two different LFER can be observed. Moreover, there is a correlation between the logarithmic values of K_{ass} and the values of AN. The values of AN may be a good indicator that expresses the electrostatic nature of the diluent and the nature of the regular solution.

CONCLUSIONS

By this study, it was confirmed that it was possible to extract benzene polycarboxylic acids with quaternary ammonium ion into several types of diluents. The extraction degrees of benzene polycarboxylic acids using TOMACl into chloroform or benzene decreased in the order 1BE > 12BE > 123BE at strong acidic or (strong) alkaline. The extraction degrees of benzene polycarboxylic acids are fairly dependent on the types of diluent and this fact is useful for designing the separation method of each component of benzene polycarboxylic acid mixtures formed by the coal oxidation. It was found that the diluents for the ion-pair solvent extraction system can be classified into two groups using dielectric constant and solubility parameter.

REFERENCES

1. Kimura, H. and Fujii, S. (1977) *Sekitan Kagaku to Kogyo*; Sankyo Press: Tokyo, 181.
2. Kamiya, Y. (1979) The chemistry of coal oxidation. *Nenryo Kyokaishi*, 58: 148–157.
3. Smith, R.C., Tomarelli, R.C., and Howard, H.C. (1939) Oxidation of carbonaceous materials to organic acids by oxygen at elevated pressure. *J. Am. Chem. Soc.*, 61: 2398–2402.
4. Oshika, T. and Okuwaki, A. (1994) Formation of aromatic carboxylic-acids from coal-tar pitch by 2-step oxidation with oxygen in water and in alkaline-solution. *Fuel*, 73: 77–81.
5. Mae, K., Shindo, H., and Miura, K. (2001) A new two-step oxidative degradation method for producing valuable chemicals from low rank coals under mild conditions. *Energy & Fuels*, 15: 611–617.
6. Vanheek, K.H., Strobel, B.O., and Wanzl, W. (1994) Coal utilization processes and their application to waste recycling and biomass conversion. *Fuel*, 73: 1135–1143.
7. Artok, L. and Schobert, H.H. (2000) Reaction of carboxylic acids under coal liquefaction conditions - 1. under nitrogen atmosphere. *J. Anal. Appl. Pyrolysis*, 54: 215–233.

8. Dunn, J.B., Burns, M.L., Hunter, S.E., and Savage, P.E. (2003) Hydrothermal stability of aromatic carboxylic acids. *J. Supercritical Fluids*, 27: 263–274.
9. Grzybek, T., Pietrzak, R., and Wachowska, H. (2004) The comparison of oxygen and sulfur species formed by coal oxidation with O_2/Na_2CO_3 or peroxyacetic acid solution. XPS studies. *Energy & Fuels*, 18: 804–809.
10. Wang, T. and Zhu, X.F. (2004) Conversion and kinetics of the oxidation of coal in supercritical water. *Energy & Fuels*, 18: 1569–1572.
11. Kurkova, M., Klika, Z., Klikova, C., and Havel, J. (2004) Humic acids from oxidized coals I. elemental composition, titration curves, heavy metals in HA samples, nuclear magnetic resonance spectra of HAs and infrared spectroscopy. *Chemosphere*, 54: 1237–1245.
12. Franke, N.W., Klebler, M.W., Rouf, C.H., Savich, J.R., and Howard, H.C. (1952) Water-soluble polycarboxylic acids by oxidation of coal. *Ind. Eng. Chem.*, 44: 2784–2792.
13. Parkin, F.G., Fugassi, I.P., and Howard, H.C. (1955) Conversion of coal to simple compounds. *Ind. Eng. Chem.*, 47: 1586–1592.
14. Ando, S. and Kamiya, Y. (1959) Composition of aromatic acids obtained by the oxidation of coal. *Nenryo-Kyokaishi*, 38: 638–646.
15. Sutoh, N., Kato, M., Ikegami, T., Okuwaki, A., Amano, A., and Okabe, T. (1983) Formation of oxalic acids by the oxidation of yallourn coal with oxygen in concentrated sodium hydroxide solution. *Nippon Kagaku Kaishi*, 690–696.
16. Okuwaki, A., Sutoh, N., Furuya, H., Amano, A., and Okabe, T. (1984) Production of oxalate by the oxidation of coal with oxygen in a concentrated sodium hydroxide solution. *Ind. Eng. Chem. Prod. Res. Dev.*, 23: 648–651.
17. Yang, S.T., White, S.A., and Hsu, S.T. (1991) Extraction of carboxylic-acids with tertiary and quaternary amines—effect of pH. *Ind. Eng. Chem. Res.*, 30: 1335–1342.
18. Eyal, A.M. and Canari, R. (1995) pH-dependence of carboxylic and mineral acid-extraction by amine-based extractants—effects of pKa, amine basicity, and diluent properties. *Ind. Eng. Chem. Research*, 34: 1789–1798.
19. Qin, W., Li, Z.Y., and Dai, Y.Y. (2003) Extraction of monocarboxylic acids with trioctylamine: Equilibria and correlation of apparent reactive equilibrium constant. *Ind. Eng. Chem. Res.*, 42: 6196–6204.
20. Prochazka, J., Heyberger, A., and Volaufova, E. (2004) Extraction equilibrium of dicarboxylic acids with tertiary amine in single and binary diluents. *Sep. Sci. Tech.*, 39: 1073–109.
21. Inci, I. and Uslu, H. (2005) Investigation of diluent effect on extraction of citric acid by trioctyl methyl ammonium chloride plus organic solutions. *J. Chem. Eng. Data*, 50: 1103–1107.
22. Senol, A. (2005) Influence of conventional diluents on amine extraction of picolinic acid. *Sep. Purif. Tech.*, 43: 49–57.
23. Kawamura, K., Nagano, H., and Okuwaki, A. (2005) Extraction of benzene and naphthalene carboxylic acids for the separation of coal oxidation products. *Sep. Sci. and Tech.*, 40: 2761–2771.
24. Schlosser, S., Sabolova, E., Kertesz, R., and Kubisova, L. (2001) Factors influencing transport through liquid membranes and membrane-based solvent-extraction. *J. Sep. Sci.*, 24: 509–518.
25. Serjeant, E.P. and Dempsey, B. (1979) *IUPAC Ionisation Constants of Organic Acids*. Pergamon Press: Oxford, New York, 989.

26. Motomizu, S. (1984) Relative extractabilities of cations and anions in the extraction of ion associates and estimation of extraction constants from chemical structure. *Bunseki Kagaku*, 33: 31–36.
27. Matsunaga, H. and Yotsuyanagi, T. (1982) Ion-pair extraction equilibria of nickel(II) dithiooxalato complex with quaternary ammonium ions. *Nippon Kagaku Kaishi*, 785–790.
28. Ruiz, M.O.J., Cabezas, L., Escudero, I., Alvarez, J.R., and Coca, J. (2002) α -phenylglycine extraction with trialkylmethylammonium chloride free and immobilized in a macroporous resin 1. *Equilibria, Chem. Eng. Res. Design*, 80: 529–536.
29. Miyabe, K., Taguchi, S., Kasahara, I., and Goto, K. (2000) Interpretation by the solvophobic theory on the linear additive representation of the logarithm of ion-pair extraction constant with individual contributions of cation, anion, and organic solvent. *J. Phys. Chem. B*, 104: 8481–8490.
30. Hildebrand, J.H. and Scott, R.L. (1964) *The Solubility of Nonelectrolytes*, 3rd ed.; Dover Publication: New York, 488.
31. Gutmann, V. (1978) *The Donor-Acceptor Approach to Molecular Interactions*; Plenum Press: New York, 279.